REGULAR ARTICLE

Davor Margetić $\,\cdot\,$ Ronald N. Warrener $\,\cdot\,$ Doug N. Butler David Officer

Computational study of supramolecular bis-porphyrin "molecular tweezers"

Recevied: 23 June 2005/ Accepted: 23 November 2005 / Published online: 22 June 2006 © Springer-Verlag 2006

Abstract A computational study of a series of space separated bis-porphyrin "molecular tweezers" using semiempirical (AM1) and DFT (B3LYP and PBE1PBE) methods has been carried out. It was found that polynorbornane bis-porphyrin systems are significantly less rigid than previously thought. The variation of the metal–metal separation distance between the two porphyrin centers does not cause a significant energy change thus enabling these molecules to easily adjust to the optimal coordination distance required for complexation by various bidentate 4-pyridyl ligands inside the cavity of these "tweezers".

Keywords DFT calculations · AM1 calculations · Porphyrins · Complexation · Supramolecular

1 Introduction

Supramolecular systems [1] possessing various flexible and semi-flexible linkers between two porphyrin rings have been synthesized and employed in host-guest studies [2–19]. These bis-porphyrin molecular tweezers are particularly interesting

Article 54, ECCC-10, April 1-30 2005, http://www.eccc.monmouth.edu

D. Margetić (⊠) Laboratory for Physical Organic Chemistry, Department of Organic Chemistry and Biochemistry, Ruder Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia E-mail: margetid@emma.irb.hr

R. N. Warrener · D. N. Butler Intelligent Polymer Research Institute, The University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia

D. Officer Nanomaterials Research Centre, Massey University, Private Bag 11–222, Palmerston North, New Zealand due to their ability to complex various ligands [20,21] and fullerenes [22–25]. Molecular modeling of related systems, at both semiempirical and DFT levels by Klärner has revealed the ability of these molecules to act as supramolecular hosts by acting as molecular tweezers, clamps and clips for synthetic receptors [26,27]. Other authors have also reported modeling studies of extended, rigid polycyclic systems using semiempirical calculations [28,29] for rigid molecular tweezers [30]. We have shown in previous research that semiempirical AM1 method is suitable for molecular modeling of polycyclic molecules [31,32].

Literature reports have indicated that certain polycyclic structures possessing polynorbornane spacers are not rigid based on 3-21G calculations of their neutral forms and radical cation [33,34]. Our previous experimental work on bisporphyrin tweezers [35] and modeling of rigid, space separated bis-porphyrin supramolecular systems has revealed that these systems have a significant degree of backbone flexibility [36](Fig. 1). In order to examine this problem in detail, here, we report a computational study on the molecular structure and complexation of several bis-porphyrin molecular tweezers. For this purpose, the recently synthetized bis-porphyrin 1 [37,38] possessing a semi-flexible linker with cyclohexene hinges, a rigidly linked bis-porphyrin 2 [39] and model molecules 3-5 (Fig. 2) were calculated at the semiempirical (AM1) level. Due to the size of these molecules, the investigation of their conformational space was performed using the AM1 method, while the energetics of their complexations were further refined by PBE1PBE/3-21G and B3LYP/LANL2DZ methods. For the sake of computational efforts, in all these studies esters and other substituents were removed.

2 Results and discussion

The most important calculated ground-state geometrical parameters of molecules **1–5** are collected in Table 1. Note that the Zn–Zn inter-atomic distance varies from 12.1 to 23.8 Å, depending on the size of the polycyclic spacer

Fig. 1 Schematic diagram of bisporphyrins separated by polycylic spacer

Table 1 AM1 Zn–Zn separation (Å) and interplanar porphyrin–porphyrin angle Ψ (°) between the two porphyrin rings for molecules 1–5

Molecule	1	2	3	4	5
Zn–Zn	17.417	23.77	22.81	15.12	12.14
Ψ	12.1	41.5	63.9	34.3	25.4

between the two porphyrin units. The two porphyrin rings are oriented towards each other with an interplanar porphyrin– porphyrin angle Ψ varying from almost parallel ($\Psi = 12.1^{\circ}$ in molecule 1) to $\Psi=63.9^{\circ}$ in molecule 3 (Fig. 3) [40].

Bending potentials were calculated for molecules **1–5** (by constraining Zn–Zn distances, with 1 Å increments) and these results are depicted in Figs. 4, 5 and 7. Inspection of these graphs reveals very flat bending potentials, with distortions of the molecules by 5–8 Å causing a comparably small change in energy of about 1 kcal mol⁻¹ (Fig. 4). These results clearly indicate that despite being constructed of rigid and semi-rigid polycyclic frameworks, these systems are quite flexible and could thus act as molecular tweezers of variable geometries.

A closer examination of the bending potential of molecule 1 (Fig. 5) has shown that there is an unexpected change in energy at a Zn–Zn separation distance of 21 Å. It was found that this behavior is due to the flipping of the porphyrin ring moiety about the cyclohexene ring, changing the structure from a bent to a linear conformer (Fig. 6a).

There are three possible conformers, bent–bent (1), bent– linear (1a) and linear–linear (1b), as depicted in Fig. 6a. The AM1 calculations predict that the linear–linear conformer 1b is more stable than the linear–bent conformer 1a by 0.46 kcal mol⁻¹ and more stable than bent–bent conformer 1 by 0.87 kcal mol⁻¹. Finally, the AM1 method predicts a slight preference for 1a over 1 by 0.41 kcal mol⁻¹. The activation energy for flipping of the model system $1c \rightarrow 1d$ was calculated to be very low (only 0.30 kcal mol⁻¹) indicating facile conformational flexibility of 1. The AM1 transition state structure for this process with a single imaginary frequency of vibration ($\nu \neq = 14.6 \text{ cm}^{-1}$) is depicted in Fig. 6c.

These results are in good agreement with the calculations of C_{60} ball-and-chain molecules in which a cyclohexene ring connects the polycylic bridge to the fullerene cage [41]. Here, it was reported that the linear conformer is energetically pre-

ferred and that there is also a small estimated energy barrier for their inter-conversion.

In contrast to molecule **1** which possesses a cyclohexene ring hinge, the bending potential of molecule **2** which lacks this flipping ability is symmetrical (Fig. 7).

2.1 Complexation studies

In order to examine host-guest interactions in 1, we have modeled zinc-porphyrin (ZnP)-pyridine complexes with several pyridyl ligands: viz., pyridine (6), 4,4'-bipyridyl (7), 1,4di(4'-pyridyl)benzene (8), 1,4-di(4'-pyridyl)pyridazine (9) and 1,4-di(4'-pyridyl)-*s*-tetrazine (10), as depicted in Fig. 8. The same ligands were also used to model related biscomplexes with bis-porphyrin 1 (as illustrated for the 1@ 9 complex in Fig. 9).

The ideal Zn–Zn distance for complexation of bis-pyridyl ligands **8–10** inside the cavity of our molecular tweezers would be the sum of 11.2 Å (ligand N–N separation) and 2×2.2 Å (Zn . . . N_{Py} coordination distance) viz., 15.6 Å. Since the Zn–Zn separation of **1** was calculated to be 17.4 Å for the binding of bis-ligands **8–10** within these cavities, a slight distortion of the host is required, which is, according to calculations discussed in the previous section, a very facile process.

An examination of the results obtained by AM1 calculations has revealed that this method provides quite accurate geometries of these model zinc porphyrin–pyridine complexes. The geometry of the square-pyramidal coordinated zinc atom is calculated to be 0.32 Å out of the porphyrin plane, which is comparable to that found by X-ray determination of zinc porphyrin–pyridine complexes (0.2–0.3 Å) [42]. The AM1 bond lengths and angles of the porphyrin moiety are similar to those of experimental porphyrin structures (Fig. 10).

Selected experimentally obtained bond lengths and torsion angles are collected in Table 2 and compared with AM1 and B3LYP/LANL2DZ calculated Znp-pyridyl complexes. Both methods correlate well with available experimental data. Experimental ZnP-N1 bond lengths ARE within a range of 2.028–2.091 Å, the average N_1 –Zn_P– N_2 bond angles are 88.6°, while the axial $Zn_P \ldots N_{rmPy}$ coordination bond lengths vary from 2.097 to 2.285 Å [43-47]. Zn-N bond lengths obtained by the AM1 method were slightly more elongated than experimental values. The other carbon-carbon and carbon-nitrogen bond lengths and angles of porphyrin were in good accord with experimental values. Furthermore, the AM1 Zn_P... N_{Py} bond lengths were predicted to be slightly longer than experimentally determined Zn_P... N_{Pv} bonds in porphyrin complexes. It is also important to note that reported crystal structures show that the zincpyridine bonds are not ideally perpendicular to the porphyrin plane, but instead are tilted by about 10° from the normal position. This geometrical feature was modeled correctly by AM1 calculations. Furthermore, the pyridine ring was slightly tipped with respect to the ZnP-NPy bond; that is, the

	XR			AM1				B3LYP/ LANL2DZ					
	XR1[58]	XR2[59]	XR3[60]	6	7	8	9	10	6	7	8	9	10
Zn–N ₁	2.065	2.068	2.073	2.082	2.085	2.085	2.083	2.080	2.104	2.103	2.104	2.104	2.101
Zn-N _{Pv}	2.234	2.171	2.143	2.246	2.253	2.248	2.257	2.269	2.237	2.240	2.232	2.243	2.251
Zn-oop ^a	0.29	0.33	0.33	0.32	0.32	0.32	0.32	0.32	0.34	0.34	0.32	0.35	0.33
$N_1 - Zn - N_2$	88.9	88	88.3	88.8	88.5	88.7	88.6	88.9	87.0	88.7	88.6	88.6	88.7
Zn-N _{Pv} -C _{Pv}	1.6			1.1	0.3	0.3	1.6	0.3	0.1	0.3	0.1	0.5	0.3

Table 2 Selected geometrical parameters for ZnP@guest complexes

Bond distances are given in Å, while angles in $^{\circ}$ XR X-ray structures

^aOut of plane deviation of zinc

Fig. 2 Bis-porphyrins connected with polycyclic spacers modeled in this study

Fig. 3 AM1 optimized structures of 1-5, side-view

Fig. 4 Comparison of AM1 bending potentials for molecules 1-5

Fig. 5 AM1 bending potential of 1

plane of the pyridine ring and the Zn_P... N_{Py} bond formed an angle of 182° rather than the expected 180°. This deviation is quite small for calculated **ZnP**@pyridine complexes, but it is much more pronounced for 1@guest complexes (Table 3). The most extensive tilt of the bound pyridine was predicted for the 1@7 complex (15.3°) and could have been the result of the distortion of bis-porphyrin host **1**. Here, the two porphyrin rings are not parallel but at an angle of 84.1° to each other. The deviation from the ideal coordination angle (90°) caused by the strain and steric hindrance of the pyridyl hydrogen atoms at the α -positions to the nitrogen atom [48] results in weaker binding and is reflected in the longer Zn_P...N_{Py} distance in this complex (2.305 Å). Other complexes have Zn_P...N_{Py} coordination bond lengths comparable to those calculated for **ZnP@Py** complexes (Table 2).

2.2 Energetics of complexation

The supramolecular properties of the bis-porphyrin molecular tweezer 1 were modeled by the incorporation of pyridyl ligands 6–10 within a cavity. Gas-phase binding energies (E_B) were estimated by the difference in energy of the **ZnP@Guest** complexes with optimized energies of pyridyl ligands and the **ZnP** (Table 4). The same computational methodology was used to estimate binding energies for 1@Guest complexes. In this model, the gas-phase

interaction energy of the porphyrin with pyridyl ligands was calculated to be about 2 kcal mol⁻¹. Estimated AM1 binding energies $(E_{\rm B})$ of **1@Guest** complexes are generally larger by $1.2 \text{ kcal mol}^{-1}$ than those of the model **ZnP@Guest** complexes, indicating stronger binding within a host cavity than for the single-ligated complexes. Binding energies suggest a preference of bis-pyridyl ligands 8-10 to coordinate inside the cavity, rather than outside. This is not the case for pyridine 6, where the binding energy for inside complexation with 1 is almost the same as for the model porphyrin-Py complex, indicating non-specific binding. Furthermore, for ligand 7, a positive binding energy of $0.31 \text{ kcal mol}^{-1}$ was calculated. This result may be rationalized in terms of the ring strain imposed by complexation with tweezer 1 [49]. The calculated N–N distance of this bis-ligand is much shorter (7.12 Å) than in all other bis-pyridyl ligands studied here (11.22–11.39Å) and requires larger bending of the polycyclic skeleton of host 1.

To refine these energetics of complexation, more accurate calculations were performed using PBE1PBE/3-21G and B3LYP/LANL2DZ methods, and the results are summarized in Table 4. Binding energies obtained with these methods are much larger when compared to the AM1 values. The same conclusions can be made from DFT results: binding energies of 1@Guest complexes are about double those of ZnP@Guest complexes indicating specific binding of the guest inside the cavity of 1. The only exception is pyridine 6, where non-specific binding is predicted. The smallest $E_{\rm B}$ was calculated for bipyridyl guest 7, presumably due to the larger geometrical distortion of molecular tweezers (due to the shortest distance between the two ligating nitrogens in 7). It is interesting to note that binding energies obtained by DFT methods for 7 are negative, indicating energy stabilization upon complexation. This result is in contrast with AM1 predictions, but in good accord with experimental results, indicating that DFT calculations perform better at estimatiing the energetics of complexes. Finally, there is a decrease in $E_{\rm B}$ in the guest series **8–9–10**. Diminished electron density of the pyridyl nitrogens affects the binding ability of ligands [50] which is caused by electron withdrawing nitrogens in the central aromatic ring. This premise was supported by calculations of Mulliken charges at the pyridyl nitrogen atom in ligands 6–10. They were calculated to be -0.189(6), -0.183(7), -0.186(8), -0.179(9) and -0.169(10), respectively. The electron density of the pyridyl nitrogen atom in 6is the largest, and accordingly, the calculated binding energy for ZnP@6 complex is greater than any other ligand studied here.

3 Computational details

All geometry optimizations were carried out with semi-empirical calculations using the AM1 Hamiltonian [51], PBE1PBE/ 3–21G [52,53] and B3LYP methods [54,55] with LANL2DZ basis set [56], as implemented in the *Gaussian 03* suite of programs [57] on *Octane* Silicon Graphics workstations and

Fig. 6 a Flipping of the cyclohexene ring in 1; b model system $1c \rightarrow 1d$; c AM1 $1c \rightarrow 1d$ transition state structure

 Table 3 Selected geometrical parameters for 1@guest complexes

	AM1					B3LYP/LANL2DZ				
	6	7	8	9	10	6	7	8	9	10
Zn–N ₁	2.088	2.090	2.083	2.082	2.081	2.102	2.105	2.103	2.109	2.101
Zn-N(Py)	2.247	2.305	2.257	2.267	2.283	2.241	2.262	2.230	2.247	2.256
Zn-oop ^a	0.287	0.320	0.322	0.288	0.289	0.333	0.296	0.299	0.323	0.277
$N_1 - Zn - N_2$	88.9	87.9	89.3	88.9	89.3	88.7	89.0	88.5	88.9	90.0
Zn-N(Py-C	0.9	9.2	4.4	2.2	4.7	0.0	8.7	2.8	1.0	0.0

Bond distances are given in Å, while angles in°

^aOut of plane deviation of zinc

Table 4 Binding energies (E_B) for complexes (kcal mol^{-1})

	AM1		PBE1PBE/3-21G		B3LYP/LANL2DZ		
Guest	ZnP@Guest	1@Guest	ZnP@Guest	1@Guest	ZnP@Guest	1@Guest	
6	-2.48	-2.62	-31.0	-30.9	-13.8	-13.3	
7	-2.13	0.31	-30.5	-57.1	-13.5	-23.6	
8	-2.31	-3.37	-30.9	-59.6	-13.8	-26.2	
9	-1.91	-2.54	-30.4	-59.2	-13.3	-25.6	
10	-1.46	-1.68	-29.6	-58.1	-12.8	-24.6	

Fig. 7 AM1 bending potential of 2

Fig. 8 Pyridine ligands calculated in this study

4 Conclusion

The AM1 method is suitable for calculations of the molecular structure of polycyclic zinc–porphyrins and their pyridine complexes. It was found that all calculated porphyrins possess very shallow energy potentials, enabling distortion of the polycyclic skeleton to adjust for coordination with bis-pyridyl ligands. Binding energies for bis-ligand complexation obtained at AM1 and DFT levels indicate that preferential mode of coordination is inside the cavity of the molecular tweezers discussed here.

Fig. 9 AM1 model of the 1@9 complex

Fig. 10 The idealized $C_{4\nu}$ geometry of the square–pyramidal coordination group in porphyrin complexes

Acknowledgements The University of Wollongong is gratefully thanked for a visiting fellowship (2004–2005) awarded to D.M. We thank also Mr. Mario Vazdar for technical help and valuable discussions during the preparation of this manuscript. The University of Zagreb is thanked for access to the Isabella computer cluster.

References

- 1. Steed JW, Awood JL (2000) Supramolecular chemistry, Wiley, Chichester
- Sakata Y, Imahori H, Tsue H, Higashida S, Akiyama T, Yoshizawa E, Aoki M, Yamada K, Hagiwara K, Taniguchi S, Okada S (1997) Pure Appl Chem 69:1951
- Yamada K, Imahori K, Yoshizawa E, Gosztola D, Wasielewski MR, Sakata Y (1999) Chem Lett 235
- 4. Haino T, Fujii T, Fukuzawa Y (2005) Tetrahedron Lett 46:257
- Kubo Y, Sugasaki A, Ikeda M, Sugiyasu K, Sonoda K, Ikeda A, Takeuchi M, Shinkai S (2002) Org Lett 4:925
- Yamaguchi T, Ishii N, Tashiro K, Aida T (2003) J Am Chem Soc 125:13934
- 7. Mizutani T, Wada K, Kitagawa S (2001) J Am Chem Soc 123:6459
- Anderson S, Anderson HL, Bashall A, McPartlin M, Sanders JKM (1995) Angew Chem Int Ed Engl 34:1096
- Dudić M, Lhoták P, Stibor I, Petříčková H, Lang K (2004) New J Chem 28:85
- Drain CM, Russell KC, Lehn J-M (1996) J Chem Soc Chem Commun 337
- Sanders JKM (1996)In: Atwood JL, Davies JED, MacNicol DD, Vögtle F (ds) Comprehensive supramolecular chemistry, vol 9, Pergamon, Oxford, pp 131
- 12. Kieran AL, Bond AD, Belenguer AM, Sanders JKM (2003) J Chem Soc Chem Commun 2674
- Haycock RA, Yartsev A, Michelsen U, Sundström V, Hunter CA (2000) Angew Chem Int Ed Engl 39:3616

- Proni G, Pescitelli G, Huang X, Nakanishi K, Berova N (2003) J Am Chem Soc 125:12914
- Yagi S, Ezoe M, Yonekura I, Takagishi T, Nakazumi H (2003) J Am Chem Soc 125:4068
- Borovkov VV, Lintuluoto JM, Sugeta H, Fujiki M, Arakawa R, Inoue Y (2002) J Am Chem Soc 124:2993
- Yagi S, Yonekura I, Awakura M, Ezoe M, Takagishi T (2001) J Chem Soc Chem Commun 557
- Iwamoto H, Yamaguchi M, Hiura S, Fukazawa Y (2004) Heterocycles 63:2005
- 19. Satake A, Kobuke Y (2004) Tetrahedron 61:13
- 20. Kubo Y, Ohno T, Jamanaka Y, Tokita S, Iida T, Ishimaru Y (2001) J Am Chem Soc 123:12700
- 21. Jokic D, Asfari Z, Weiss J (2002) Org Lett 4:2129
- Tashiro K, Hirabayashi Y, Aida T, Saigo K, Fujiwara K, Komatsu K, Sakamoto S, Yamaguchi K (2002) J Am Chem Soc 124:12086
- Sun D, Tham FA, Reed CA, Chaker L, Boyd PDW (2002) J Am Chem Soc 124:6604
- Zheng J-Y, Tashiro K, Hibayashi Y, Kinbara K, Saigo K, Aida T, Sakamoto S, Yamaguchi K (2001) Angew Chem Int Ed Engl 40:1858
- 25. Borowiec J, Trojnar I, Wolowiec S (2004) Polyhedron 23:33
- Klärner F-G, Panitzky J, Preda D, Scott LT (2000) J Mol Model 6:318
- 27. Klärner F-G, Kahlert B (2003) Acc Chem Res 36:919
- Lawson JM, Oliver AM, Rothenfluh DF, An Y-Z, Ellis GA, Ranasinhe M, Khan SI, Franz AG, Ganapathi PS, Shephard MJ, Paddon-Row MN, Rubin Y (1996) J Org Chem 61:5032
- Bell TDM, Jolliffe KA, Ghiggino KP, Oliver AM, Shephard MJ, Langford SJ, Paddon-Row MN (2000) J Am Chem Soc 122:10661
- Zimmerman SC, VanZyl CM, Hamilton GS (1989) J Am Chem Soc 111:1373
- Warrener RN, Butler DN, Liu L, Margetiæ D, Russell RA (2001) Chem Eur J 7:3406
- 32. Warrener RN, Margetić D, Amarasekara AS, Butler DN, Mahadevan I, Russell RA (1999) Org Lett 1:199
- 33. Shepherd MJ, Paddon-Row MN (1999) J Phys Chem A 103:3347
- 34. Shepherd MJ, Paddon-Row MN (2000) J Phys Chem A 104:11628
- 35. Flamigni L, Johnston MR (2001) New J Chem 25:1368
- 36. Flamigni L, Marconi G, Johnston MR (2001) Phys Chem Chem
- Phys 3:4488
- 37. Gunter MJ, Tang H, Warrener RN (1999) J Chem Soc, Chem Commun 803
- 38. Gunter MJ, Tang H, Warrener RN (2002) J Porph Phthal 6:673
- 39. Warrener RN, Johnston MR, Gunter MJ (1998) Synlett 593
- 40. B3LYP/LANLZDZ optimized geometry of 1 has Zn–Zn separation of 15.205 Å and dihedral angle Ψ between two porphyrin rings 11.1° .
- Khan SI, Oliver AM, Paddon-Row MN, Rubin Y (1993) J Am Chem Soc 115:4919
- Stibrany RT, Vasudevan J, Knapp S, Potenza JA, Emge T, Schugar HJ (1996) J Am Chem Soc 118:3980

- Troshin PA, Troyanov SI, Boiko GN, Lyubovskaya RN, Lapshin AN, Goldshleger NF (2002) Fuller nanotubes. Carbon Nanostruct 12:413
- 44. Chiraoni A, Riche C, Bied-Charreton C, Dubois JC (1988) Acta Cryst C44:429
- 45. Brennan TD, Scheidt WR (1988) Acta Cryst C44:478
- 46. Sen A, Suslick KS (2000) J Am Chem Soc 122:11565
- Zaitseva SV, Zdanovich SA, Semeikivn AS, Golubchikov OA (2003) Russ J Gen Chem 73:499
- Ikeda C, Nagahara N, Yoshioka N, Inoue H (2000) New J Chem 24:897
- Sun D, Tham FS, Reed CA, Chaker L, Burgess M, Boyd PDW (2000) J Am Chem Soc 122:10704
- 50. Wilson SR, MacMahon S, Tat TF, Jarowski PD, Schuster DL (2003) J Chem Soc Chem Commun 226
- 51. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4499
- 52. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865
- 53. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396
- 54. Becke AD (1988) Phys Rev A 38:3098
- 55. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785
- 56. Wadt WR, Hay PJ (1985) J Chem Phys 82:284
- 57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich A, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford A, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CI, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B03, Gaussian Inc, Pittsburgh
- 58. Fleischer EB, Scachter AM (1991) Inorg Chem 30:3763
- Spaulding LD, Andrews LC, Williams GJB (1977) J Am Chem Soc 99:6918
- 60. Collins DM, Hoard JL (1970) J Am Chem Soc 92:3761